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Calculation of boundary-layer development 
using the turbulent energy equation: compressible flow 

on adiabatic walls 
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(Received 26 March 1970) 

The basic method described by Bradshaw, Ferriss & Atwell (1967) is extended 
to compressible flow in two-dimensional boundary layers in arbitrary pressure 
gradient (excluding shock waves and expansion fans) by invoking Morkovin’s 
hypothesis (Favre 1964) that the turbulence structure is unaffected by com- 
pressibility. Using the same empirical functions as in incompressible flow, skin 
friction in zero pressure gradient is predicted to within 3 yo of Spalding & Chi’s 
(1964) correlation for free-stream Mach numbers less than 5. Comparisons with 
experiments in pressure gradient are restricted by the lack of data, but, since 
Morkovin‘s hypothesis does not depend on pressure gradient, methods which 
use it (of which the present method seems to be the f is t )  can be checked fairly 
adequately by comparisons with data in zero pressure gradient. 

No ‘compressibility transformations ’ are needed, although the Crocco relation 
is used, provisionally, for the temperature: since the calculations take only 
about 20 yo longer than in incompressible flow, Morkovin’s hypothesis does as 
much as any transformation could do. It is pointed out that, in supersonic flow, 
surface curvature which is large enough to induce a significant longitudinal 
pressure gradient is also large enough to have a very significant effect on the 
turbulence structure. 

1. Introduction 
Bradshaw et al. (1967, hereafter cited as Q) described a method of boundary- 

layer calculation, based on the turbulent energy equation for D@/Dt, the rate 
of change of 42 = g(?+G+G) along a mean streamline (Townsend 1956, 
equation 2.4.10). Most previous calculation methods relied on assumed relations 
between properties of the turbulence (such as shear stress or entrainment) and 
properties of the mean velocity field (such as velocity gradient or profile shape 
parameter). The method of Q involves only assumptions about the relations 
between one turbulence property and another-that is, about the turbulence 
structure. (‘Structure’ is used here in the sense of Townsend (1956) and many 
other authors, as a collective noun for the relations between the statistical 
properties of the turbulence.) The basic assumption of Q was that the turbulence 
structure at a given streamwise position is uniquely specified by the turbulent 
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shear-stress profile so that, for instance, for a given shear-stress profile there is 
one and only one intensity profile, the relation between the two being derived 
from experimental data. By introducing empirical relations of this sort between 
the shear stress and all the other turbulence properties appearing in the (exact) 
turbulent energy equation, that equation can be converted into an (approximate) 
equation for D( -iiE)/Dt, the rate of change of turbulent shear stress along a 
mean streamline. Rather simple empirical relations give results of good engi- 
neering accuracy as long as the boundary-layer approximation is obeyed 
(Kline et ab. 1969). In principle, the same basic assumption about the turbulence 
structure could be used directly to convert the exact equation for D( -,EV)/Dt 
(Townsend 1956, equation 2.4.9) into a closed (approximate) form, but this 
equation contains correlations between the fluctuations of velocity and pressure 
which cannot at  present be measured or estimated with any certainty. 

Because the method of Q relies solely on assumptions about the turbulence 
structure, it can be extended quite easily to compressible flow by invoking a 
siniple hypothesis first clearly formulated by Morkovin in 1961 (published in 
Fame 1964). Morkovin pointed out that one would not expect the turbulence 
structure (specifically, dimensionless quantities like anisotropy parameters, 
spectrum shapes and the like) to be affected by compressibility as long as the 
Mach number fluctuation is much less than unity (so that density fluctuations 
are small compared to the mean density). This condition is satisfied by all non- 
hypersonic boundary layers (free-stream Mach number MI less than 5, say). 
Morkovin’s hypothesis is supported by his analysis of the measurements of 
Kistler (1959), by the later measurements of Demetriades (1968) and a posteriori 
by the success of the calculation method described below. It is much more 
subtle, and more plausible, than the hypothesis that ‘eddy viscosity’ relations 
between the shear stress and the mean flow are unaltered by compressibility. 
The mean flow is greatly altered by compressibility, particularly in a longitudinal 
pressure gradient, and nothing that we know about turbulence supports the 
idea that the shear stress should be altered in just the same way: assumptions 
of this sort can only be justified by direct appeal to experiments in compressible 
flow and it is unfortunately the case that there are literally no compressible 
boundary-layer measurements, except in zero pressure gradient, that can be used 
as reliable and severe test cases for calculation methods (this melancholy state- 
mentwill be elaborated in § 7) .  It follows that prediction of compressible boundary 
layers to the high accuracy needed by the aircraft industry can only be achieved 
at  present by extensions of incompressible-flow methods, using additional 
hypotheses that can be adequately tested in zero pressure gradient. Morkovin’s 
hypothesis is independent of pressure gradient, except that one must always 
expect changes in turbulence structure if rates of strain other than the mean 
shear become appreciable, so that the hypothesis would fail in the presence of 
shock waves and expansion fans where the dilatation div U is large. Therefore 
if Morkovin’s hypothesis is applied to an incompressible-flow method that gives 
good results in a wide range of pressure gradients and the resulting compressible- 
flow method gives good results in zero pressure gradient then (i) Morkovin’s 
hypothesis is justified; (ii) the compressible-flow method will give good results 
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in a wide range of pressure gradients not involving shock waves, expansion fans 
or other violations of the boundary-layer approximation. 

In  the present paper this piece of logic is applied to the method of Q. 
Another method of proceeding from incompressible to compressible ff ow is 

via a density transformation of the sort rigorously derived for laminar boundary 
layers and since unrigorously applied to turbulent boundary layers. Our position 
on transformations is the same as that of McDonald (Bertram 1969) : “In summary 
it does not seem that the presently available transformations can withstand a 
careful scrutiny” (see also Bradshaw, Sivasegaram & Whitelaw 1970). To be 
reliable, a transformation must, surely, either deal explicitly with the turbulence 
as well as the mean flow (so that its physical plausibility can be assessed) or be 
accompanied by an existence proof. Since this has not yet been accomplished, 
even for zero pressure gradient, the prospects of a general transformation 
capable of competing directly with Morkovin’s hypothesis seem remote. 

The use made of Morkovin’s hypothesis in the present paper to extend the 
method of Q to compressible flow is straightforward: we simply assume that the 
empirical relations between the shear stress and the other turbulence properties 
used in the method of Q are unaltered by compressibility (but see the beginning 
of § 4 for discussion of a special point). Having made this assumption, no further 
physical input is necessary (except that, as in incompressible flow, we use the 
universal inner-law velocity profile as the inner boundary condition). Since the 
method of Q has been tested as well as the incompressible data allow (see Kline 
et al. 1969) there is no point in further trial-and-error adjustment of the empirical 
functions to improve agreement with the data. Purthermore, the general 
behaviour of the compressible version at  non-hypersonic Mach numbers-for 
example its sensitivity to initial conditions or to changes in the empirical 
relations-is bound to be qualitatively the same as that of the incompressible 
method. From the point of view of the student of compressible turbulent flow, 
Morkovin’s hypothesis spoils the fun; but it is a great comfort to the user of 
calculation methods. This does not exclude difficulties from phenomena like 
shock waves which are peculiar to supersonic flow or from special influences like 
surface curvature and low Reynolds number which are more important in 
supersonic flow (see $54 and 6). 

In  this paper we describe the extension of the method of Q to compressible 
boundary layers with zero heat transfer a t  the surface : by accepting the restric- 
tion that (y  - 1) M 2  shall not be an order of magnitude greater than unity (a 
stronger restriction than Morkovin’s) the effects of density fluctuations, though 
not of mean density variations, can be virtually eliminated from the equations. 
This limits the free-stream Mach number to about 3 (in fact the results at  
MI = 5 in zero pressure gradient are still satisfactory) but above this Mach 
number, boundary layers with zero heat transfer are of little practical importance. 
So far, the main use of the present method in industry seems to have been in 
high subsonic and transonic flow. The restriction to zero heat transfer is not 
insurmountable, but we considered it advisable initially to develop the heat- 
transfer version of the method in incompressible flow with small temperature 
differences (Bradshaw & Ferriss 1968): the extension to compressible heat 
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transfer is now running with satisfactory results (Bradshaw & Ferriss 1970) and 
further numerical work is in progress. In the present calculations the temperature 
distribution across the boundary layer is assumed to be given by the Crocco 

(1) relation 

with r = 0.89, which is known to be a good approximation, although it does not 
satisfy the thermal energy equation 

cp T + &rU2 = constant = cp T,, 

for an adiabatic wall because the small positive values of To - To, in the outer 
part of the boundary layer are neglected. (Here suffixes 0, 1 and w denote 
stagnation, free-stream and wall conditions respectively.) It appears from 
experimental data that the recovery factor does not depend greatly on pressure 
gradient. The effect of taking the recovery factor to be unity instead of about 
0.9 is to decrease the skin friction in zero pressure gradient by about 5 %  at 
MI = 2.2: clearly uncertainties of 1 or 2 yo in the recovery factor will not affect 
velocity calculations, although they affect integral quantities via the density 
profile. To put the Crocco relation in context we may note that it is frequently 
used (even with r = 1) to reduce experimental data, so that it is accurate to 
within the likely error of velocity profile data. The Crocco relation, with the 
addition of a linear term, can be used in principle in boundary layers with heat 
transfer (see, for instance, Rotta 1965) but it does not seem to agree well with 
experiment and we have not attempted to use it for heat-transfer calculations. 
In adiabatic flow it is a great numerical simplification. 

It is difficult to compare the present assumption about the effect of com- 
pressibility on turbulence with the assumptions made by previous authors, 
because in no case known to us have previous authors explicitly invoked 
Morkovin’s hypothesis. Since Morkovin’s hypothesis is an obvious point of 
reference for compressible calculation methods it is surprising to find it generally 
ignored by authors of calculation methods and of review articles. 

As indicated by McDonald (Bertram 1969) integral calculation methods 
(solving ordinary differential equations for integral parameters) usually depend 
on the transformation of an incompressible-flow method, and stand or fall with 
the transformation. McDonald’s comparisons appear to us to show that trans- 
formed integral methods generally give rather less plausible answers than his 
‘modified mixing length ’ and eddy-viscosity methods, although McDonald 
does not draw this conclusion and the unreliability of the experimental data 
makes any definite assessment impossible. One integral method which does not 
use a transformation is that of Green (1968) : this relies on an empirical correla- 
tion of the variation of dimensionless entrainment rate with Mach number in 
constant-pressure boundary layers (see figure 1). Green points out that the 
transformations he considered all gave a dimensionless entrainment rate inde- 
pendent of Mach number, contrary to experiment. The incompressible calculation 
method on which Green’s method is based is the original entrainment procedure 
of Head (1958) which is less accurate than some more modern methods (Kline 
et al. 1969) so that direct comparisons of Green’s method with others would give 
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a misleading impression of his empirical treatment of compressibility. Without 
necessarily implying that integral methods as such are less reliable, it appears that 
the reliability of this type of empirical treatment is better assessed by considering 
differential methods (solving partial differential equations for local velocity). 

Recently, three methods of this type have been published, by Herring & 
Mellor (1968), Cebeci, Smith & Mosinskis (1970) and Sivasegaram (1970): all 
are extensions of well-established methods for incompressible flow and the 
assumptions made about the effects of compressibility on the turbulent shear 
stress are mathematically simple. All three methods rely on simple 'local 
equilibrium ' relations between velocity gradient and shear stress, ignoring the 
effects of turbulence history. A fourth recent method is a compressible version 
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FIGURE 1. Approximate entrainment parameter (S,,, - S,)/S,. 
0, data of various experiments; -, 8(p,/p#, used in calculations. 

of the eddy viscosity method of Ng & Spalding (1970). The eddy viscosity is 
taken to be the product of a turbulence velocity scale (the square root of the 
turbulent kinetic energy per unit mass) and a turbulence length scale: semi- 
empirical partial differential equations are solved for both these quantities and 
it is assumed that not only the empirical constants but also the terms in the 
equations are unaltered by compressibility, providing that the local mean 
density is inserted. The early report on this method, by Ng & Sivasegaram (1970), 
does not give any explanation of this assumption so that it cannot yet be 
assessed. Finally, the method of Donafdson & Rosenbaum (Bertram 1969), which 
employs differential equations for u2, w 2  as well as the shear stress - UV, is 
evidently intended for extension to high-speed flow and could use Morkovin's 
hypothesis in the same way as the present method, but no details are available 
at present. Therefore, we can compare the present assumptions only with those 
used in the methods of Herring & Mellor, Cebeci et al. and Sivasegaram. 

In the first two of these methods it is assumed that the apparent eddy viscosity 
in the outer part of the boundary layer is a constant multiple of 

- -  
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independent of the mean density profile and Mach number. Sivasegaram, in his 
extension to compressible flow of the mixing-length method of Spalding and 
Patankar (1967), assumes that (mixing length)/S is independent of Mach number. 
The direct justification for these empirical assumptions is the analysis of data 
in compressible boundary layers in zero pressure gradient by Maise & McDonald 
(1968), Sivasegaram (1970) and L. C. Squire (Cambridge University, private com- 
munication). In  view of the lack of data it is not possible to assess these empirical 
assumptions in compressible flow with pressure gradient. In  incompressible flow 
large variations in dimensionless eddy viscosity or mixing length can occur in 
rapidly changing boundary layers (see, for example, Bradshaw & Ferriss 1965): 
rapidly changing boundary layers are of particular importance in high-speed flow 
and changes in density per se may affect the eddy viscosity or mixing length. 

It will be shown in $ 3  that, as in incompressible flow, the mixing-length 
formula is a first approximation to the shear stress equation on which the 
present method is based: therefore, as in incompressible flow the present method 
is virtually certain to be an improvement on methods based on the mixing- 
length formula because it allows for ‘history’ effects on the turbulence. To 
show that large differences between it and the local-equilibrium methods can 
occur in practical cases, figure 8 compares the present method and the mixing- 
length method for a fictitious separating boundary layer. There are appreciable 
differences in predicted separation position, in the sense to be expected from the 
neglect of ‘history ’ effects in the mixing-length expression. Similar discrepancies 
are likely to arise with other local-equilibrium methods. 

The method described in this paper was completed, and written up as an 
‘unpublished’ report, in 1966. We have delayed publication in the hope that 
reliable test data for supersonic boundary layers in pressure gradient might 
appear: Sivasegaram (1970) has described his measurements in a small super- 
sonic tunnel which we built for this purpose but which was unfortunately 
restricted to small pressure gradients. There are still no really satisfactory test 
cases, but in view of the publication of the other methods mentioned in the last 
paragraph, with their physical shortcomings, we felt we should now publish our 
work. We have not presented comparisons with all the available test oases 
because of their unsatisfactory nature, as documented in 3 7 below: for the same 
reason extensive comparisons with other predictions of these test cases would 
add little to  the above discussion of the physical basis of the different methods. 

We are cautiously optimistic about the accuracy of the method in supersonic 
flow in arbitrary pressure gradient: at the least, it is a rational technique for 
extending the method of Q t o  compressible flow and should maintain the 
accuracy of that method up t o  transonic Mach numbers or higher. 

2. Derivation of the equations for compressible flow 
Morkovin (Favre 1964) and Pavre (1965) have discussed this question from 

the physical and mathematical points of view respectively. Here, our chief 
concern is the making of legitimate approximations to simplify the equations. 
Where only small letters appear in an equation they represent instantaneous 
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(mean plus fluctuating) quantities: where both large and small letters appear 
they represent mean and fluctuating velocities respectively; overbars and primes 
are used to denote the mean and fluctuating parts of p and p. Tensor notation, 
with the repeated-suffix summation convention, is used in this section only. 

The mean continuity equation 

a Taking the time mean of 
?+-(pu,) at axi = 0, 

we have 
a 

-((pui+p‘u,) = 0. 
axi 

- 

The mean momentum equation 
Taking the mean of 

aui aui ap 
g a x j  axi 

p -at +pu . - = - - + complicated viscous terms 

(3) 

(4) 

(the equation is given in full by Howarth (1953, p. 50)) and using the continuity 
equation, we have 

The turbulent kinetic energy equation 
Multiplying the instantaneous momentum equation by ui, the instantaneous 
continuity equation by tut, adding and taking the mean, we have 

a -  aP 
3x3 axi 
- +put uj  = - ui - + viscous terms, 

where the symbols still denoteinstantaneous quantities. Changing the suffix on the 
right-hand side from i to j and discarding the terms in the mean energy equation, 
obtained by multiplying by the mean instead of the instantaneous velocity, we get 

a - -  u. - (*pu; + *p’u$) 
3 ax; 

advection 

turbulent mass flux times mean acceleration 
- a &  + p‘ui u. - 

3 ax; 
J au, + (*pui+*p’u$)- 

ax, 
normal stress times mean dilatation 

pressure-dilatation mean product 

turbulence production 

a -  - ’ -  
+ - (p’u, + + p u t ~ ~  + *p’u2uj) energy diffusion axj 
+viscous terms 
= 0. ( 7) 

The form of the equation given here is the same as Fame’s equation (95). 
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Approximations 

The above results are exact: we now proceed to discard some of the terms, 
using order-of-magnitude arguments based on the boundary-layer approxima- 
tion and the relative smallness of the terms involving the density fluctuation. 
We shall require ( y  - 1 )  M2, to be not much larger than unity because this allows 
us to eliminate nearly all such terms. This condition is not quite the same in 
spirit as Morkovin's: in effect it is a (very conservative) condition that 

whereas Morkovin's is a condition that 32 < p.  
Before using these order-of-magnitude arguments we must show that, outside 

the viscous sublayer, the viscous terms in the turbulent energy equation may 
be equated to the dissipation. Tritton (1961) has pointed out that viscosity 
fluctuations, caused even by small temperature fluctuations, may greatly 
increase terms like 

because aui/ax, is much greater than aqlax,. However, Tritton's argument is 
based on the assumption that 

is of order unity for some of the components, and this is unlikely to be the case 
for flows a t  high Reynolds number where most of the contribution to aui/axi 
comes from the locally isotropic eddies, because by definition the strong currela- 
tion between the temperature fluctuations and the longitudinal velocity 
fluctuations cannot extend into the isotropic range: we are grateful to Dr 
Tritton for pointing this out. Tritton's argument will certainly apply near the 
viscous sublayer, but it is probably justifiable to apply incompressible-flow 
arguments for the neglect of the viscous terms outside the viscous sublayer if 
the boundary-layer Reynolds number is high. The sublayer thickness appears 
to be given roughly by ( -u2r)~y/ulOcrtl M 30, as in incompressible flow. 

Morkovin, supported by the experiments of Kistler (1959), shows that the 
fluctuation of total temperature in the flow is much less than the fluctuation of 
the static temperature, so that the latter is given to fair accuracy in a boundary 
layer by 

(from here onward we use u, v, w for the ui and q2 = u2+v2+ w2 for u:). 

fluctuation is much less than unity we obtain 

c,dT+ U d u  = 0 ( 8 )  

Remembering that the pressure fluctuations are small if the Mach number 

p'/p z ( y - l ) M 2 u / U ,  (9) 
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where M is the local Mach number. Using this relation we see 

(i) &/pU w ( y -  l ) M 2 2 / U 2  Q 1; (10) 

p T N  (y -  1)M2pUZ)/U - pv. 
p T / P ?  N (y - 1) M2q2u/q2U N (7 - 1) M 2  q2v/q2Ul Q 1, 

(ii) since V / U  N dS,/dx N dJ2/dx N rw/pl 7J2, in small pressure gradients,i then 

(11) 

(12) 

Therefore in general we cannot neglect pI'u with respect to PV. 
_ _  -- 

(iii) 
-- 

since q2v/q2 is less than or equal to the entrainment velocity V, at  the edge of the 
flow, where 'advection' = 'diffusion' (see 5 4). Over most of the boundary layer 
q2v/q2 Q V,  so the inequality is very well satisfied if (y - 1) M$V,/Ul < 1, generally 
equivalent to (y - 1) M2, dJ/dx < 1 (see table 1). 

(iv) Similarly p'zcv/puV Q 1. It is arguable that p u 1 . ' + ~ v ,  rather than puV, 
could be considered as the basic variable, rendering this inequality unnecessary. 

(v) Reverting for convenience to the suffix notation, we see that p x a U j / a x j  
and Ujap'u,/azj are at  most of the same order as p'u,aU/ax which is negligible 
compared with p U  aU/ax on account of (i). 

(vi) Finally, p'au,/ax, = - (p'/p) (@'/at + Uj @'/axj) which is small compared 
to, say, a(p'uj)/axj because the second factor is the rate of change of p' following 
the mean motion of the fluid; this is much smaller than Ujap'/axj if Taylor's 
hypothesis is obeyed. 

The argument that p'u~uj/j iu~uj < 1 rests on dubious estimates of the fourth- 
order correlations and on the smallness of aU2, compared with dS/dx and is 
not to be relied on: fortunately we can consider all three terms in the energy 
diffusion together . 

The terms in the turbulent energy equation that represent advection and 
normal stress times mean dilation may be written together as 

_-  

~ 

_ _ _ _ _  

a(puj g iij)/axi 

(pu. +&) a($ u$)/axj - a($u;pruj)/axj. 

which on using the continuity equation becomes 
- 

Both the second term in this expression and the term in the turbulent energy 
equation representing mean acceleration times turbulent mass flux (or, roughly, 
shear-stress gradient times turbulent mass flux) are small compared with a 
typical value of the turbulence production, by virtue of the boundary-layer 
approximation, but these terms may play an appreciable part in the local 
energy balance near the outer edge of the layer where the turbulent energy is 
small, although they go to zero at  the edge faster than 42. While this is not 
likely to affect the overall behaviour of the layer very much it is possible to  
represent these terms together roughly by a term 

7 Here 8, and 8, are the displacement and momentum thicknesses respectively. 
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where t is a constant such that tr/a, is about 7, and where density and velocity 
gradients have been assumed small. The effect of including this term is to increase 
the skin friction coefficient, cf = rW/& U?, in zero pressure gradient by about 
0.8 % at M = 2 and 1-5 % at M = 3. Rotta (1967) has pointed out that the term 
p'vUaV/ax may be appreciable if the surface curvature is large: we return to 
the effects of surface curvature in Q 6. 

We can now write the simplified equations as follows, for the case of two- 
dimensional mean flow, noting that according to the boundary-layer approxi- 
mation some derivatives in the x direction are negligible compared to those in 
the y direction: 

(13) 

where E is the rate of dissipation of turbulent kinetic energy per unit mass. 

more restrictive condition, applicable in mild pressure gradients, is 
These equations are valid only if (7- 1) M:?/U2, < 1 (a simpler and rather 

( y -  1)M2,dfydx < 1) 

but it is interesting to observe that Morkovin's simplification may be valid a t  
all Mach numbers. If we represent a typical fluctuating Mach number in a 
constant-pressure flow by 

(+)+/a = (r17l))i G (TW/Y13)i = J f I ( & j ) * ,  

we find that, since according to Spalding & Chi's (1964) or Coles's (1964) corre- 
lation c j  N 1/M? for M > 7 on an adiabatic wall, the fluctuating Mach number 
never exceeds 0-15 to 0.2. Since r/p? z 0.15, the Mach number based on the 
r.m.s. velocity fluctuation reaches 0.6 to 0.8 so that moderate compressibility 
effects may occur. Unfortunately the effect of the mean density gradient on the 
large eddies increases monotonically with free-stream Mach number (see figure 1 
and Q 4), but there seems a good chance of extending the present type of calcula- 
tion method well into the hypersonic range. Of course, most of the practical 
interest is in highly-cooled walls, for which c j  and the fluctuating Mach number 
are higher, so that even Morkovin's condition would break down a t  hypersonic 
Mach numbers. 

3. Solution of the equations 
It is convenient to use T @  rather than r as ;I variable so that (r /p) f  can be 

used as a local velocity scale for the turbulent motion. Also, ( V + p'v/p) is clearly 
a more suitable variable than V alone. In the equations only, we will write r 
for r/F and V for (V +p'V/p). We use the Crocco relation cp T + & y U 2  = constant 



Compressible turbulent boundary layer on adiabatic walls 93 

to find the mean temperature (and hence the mean density and Mach number) 
in terms of U ,  and make the following definitions, with rmax taken as the 
maximum value in the outer layer, y > $8: 

- 
a, = r/q2 = constant, 

as in incompressible flow. Equations (13) to (15) for the variables U ,  V ,  and T 

become respectively 

2') 5 
U a7 V tr --+ - + - ( 7 - l ) M  

2a, ax (2a, a, aY 

where the coefficient of dp/dx in the second (momentum) equation is really 
equal to - l/p as usual but is written in the above form so that the mean density 
does not appear explicitly in the equations. In  order to derive the equations we 
need the Crocco relation for the temperature profile: we do not need any 
' compressibility transformation ' and none has been invoked in the derivation 
of the equations. Moreover, it is clear that no simple transformation will reduce 
these equations to their incompressible form. If the pressure gradient is zero, 
y appears in equations (17)-(19) only in the group r (y-  1) M 2  so that the be- 
haviour of boundary layers in other gases can be deduced from the behaviour 
in air at  a different Mach number. This similarity is not found in arbitrary 
pressure gradients but as none of the empirical data depend on y, with the 
possible exception of the additive constant in the logarithmic law (34), the 
method can be, and has been, applied to other gases. 

The shear stress equation (19) reduces to the mixing-length formula, as in 
incompressible flow, if we neglect the 'transport ' terms (i.e. those containing 
a, or G). Equation (19) becomes 

r aujag = d / L ,  120) 

which is the mixing-length formula with mixing length equal to L. The neglect 
of transport terms is justifiable by experiment near the surface but outside the 
viscous sublayer, and this is used below in dealing with the h e r  boundary 
condition. In  the outer part of the flow, the mixing-length formula is a rough 
first approximation to (19) so that the present analysis can be used as a rather 
uncertain justification, via Morkovin's hypothesis, of the extension of 'mixing- 
length' methods to compressible flow. 
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Equations (17) to (19) are hyperbolic, like the incompressible-flow equations 
of Q ,  to  which they reduce when M+-0, and the method of characteristics is 
again used for solution. The characteristic angles are given by 

tan y = 00, (V + (t  - &)WT+ alGP+ [(alGP + (t  + &) W T } ~  + 2a17( 1 + GPW)]e}/U, 
(21) 

where P = 7max, 4 W = r (y-  1)M2/U. 

It might be thought that the vertical characteristic, along which the V compo- 
nent velocity propagates, should instead be inclined at  the local Mach angle: 
however, the implicit use of the thin-boundary-layer approximation, ap/ay = 0, 
carries the assumption that pressure disturbances propagate vertically. The 
basic assumption is that the Mach angle is much greater than the angle of 
the inclined characteristics, implying l/Ml B &/ax: this is roughly equivalent 
to (y-  1) M:d8/dx 4 1 at non-hypersonic Mach numbers. Myring & Young 
(1968) discuss the question of normal pressure gradients in more detail: it  
becomes important on highly-concave surfaces where, however, the effects of 
curvature on the turbulence are extremely large ($6) .  The equations along the 
characteristics are 

along the vertical characteristic, and 

ds 2 d s  

7u 1 d p  

5 ((GP+ (t + &) F)’+F (1 + GPW)  
a1 a1 

along the other two characteristics. 
The inner ‘boundary’ condition, applied at one mesh length from the surface, 

is the universal inner layer law, the compressible version of the logarithmic 
law used at low speeds (see Q, p. 603). The general form for compressible flow of 
a given gas in small pressure gradient is (Rotta 1960) 

UP7 = f ( U T Y l V W  u,lalU), (24) 

where u, E (7w/pw)*, and uJa, = MT is the only relevant Mach number: i& 
does not appear. The numerical procedure for solving the inner boundary con- 
dition simultaneously with the equation on the ingoing inclined characteristic 
is similar to that used in incompressible flow. As in incompressible flow, more 
complicated cases such as surface roughness or transpiration can be accom- 
modated if the corresponding inner law is known (Squire 1969). Near the surface, 
but outside the viscous sublayer, (19) reduces to the mixing-length formula 
(with mixing length 2 = K y  where K w 0.40) and the inner law for the more 
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complicated cases can be obtained by integration, with a ‘ constant ’ of integra- 
tion representing the effect of the sublayer. The ‘constant’ is actually a function 
of parameters like M,, dimensionless shear-stress gradient, roughness Reynolds 
number, ratio of transpiration velocity to uT, and so on. The constant can be 
found only from experimental velocity profiles or from a model of the turbulence 
in the viscous sublayer itself. The most sophisticated assumption made about 
the viscous sublayer to date is that l /Ky is a universal function of a local turbu- 
lence Reynolds number (( - U2.’)*y/v,,,,, being the most realistic definition). 
Unfortunately this overlooks the fact that significant energy diffusion towards 
the surface occurs so that ‘local equilibrium’ assumptions are not valid in the 
viscous sublayer. The local-equilibrium assumptions are found to give fairly 
good results in cases where profile measurements are available, but in these 
cases they are not really needed. In  any case, the simplest way of incorporating 
the effect of the sublayer in a calculation method, however that effect is derived 
in the first place, is via the ‘constant’ of integration. Integration across the 
sublayer at  each step of the calculation is time-consuming and unnecessary, 
because even if a turbulence model for the sublayer is being used the integrations 
can be done once for all to establish the ‘constant’ of integration as a function 
of the above-mentioned parameters. Sublayer integration at  each step can be 
justified only by numerical convenience: the method of characteristics is better 
adapted than rectangular-mesh methods for matching to a complicated boun- 
dary condition because gradients need not be matched (see Ferriss 1969), so 
we have not been forced to integrate in this way. 

The computer program is so similar in operation to the incompressible-flow 
program, described in Q and in greater detail by Ferriss & Bradshaw (1968), 
that no detailed explanation is needed: the major change is the introduction 
of the variable W = r ( y  - 1) M2/  U, which it is convenient to store and transfer 
in the same way as U .  The program will not run at  M = 0 exactly because 
division by M occurs, but the results of runs at  very low Mach number compare 
satisfactorily with those of the incompressible program. The predictions of 
momentum thickness agree with the momentum integral equation to within 
one per cent of the change in a,, in mild pressure gradients. The running time 
of the program is no more than 20% greater than that of the incompressible 
program. To make the program simpler to use in cases where the initial condi- 
tions are ill-defined or unimportant (preferably the latter as well as the former) 
we have inserted a routine for generating an initial velocity profile from Coles’s 
family, given ct and 8,: a shear-stress profile is then generated using an assumed 
mixing-length distribution chosen to  give the right shear-stress profile in zero 
pressure gradient in incompressible flow. Maise & McDonald’s (1968) work 
suggests that the mixing-length assumption should be adequate up to M = 5: 
Coles’s profile family is not very accurate above the transonic range, but should 
again be adequate for ill-defined initial conditions. 

Like the program of Q, the present ,program contains an allowance in the 
continuity equation for lateral divergence or convergence. 
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4. Empirical data input and limits of validity 
High Reynolds numbers 

In  the test cases presented here we have used exactly the same numerical 
values for the empirical functions a,, L and G as were used in Q for incompressible 
flow. One ought not to expect the effect of mean density variations on turbulent 
energy diffusion to be entirely represented by inserting the local density in the 
definition of the energy diffusion function G (equation (16)) because the large 
eddies which diffuse energy extend across most of the outer layer: however, as 
will now be shown, the variation of diffusion with Mach number is adequately 
represented up to Nl = 3 by this means, so we have not bothered to introduce 
an explicit function of N, into the specification of G. Near the edge of the 
boundary layer, diffusion from below is entirely responsible for the increase of 
turbulent energy along a streamline, and the turbulent energy equation can be 
reduced to 

neglecting the D term ($2) which appears to go t o  zero at  the edge of the layer 
more rapidly than the retained terms. Assuming that the product of p and the 
entrainment velocity V, can be regarded as independent of y near y = 8, integra- 
tion gives 

z constant near y = 6, 

(so that since q2v/q2 reaches a maximum near y = 6 it is elsewhere less than 5). 
Substituting from (1 6), we have 

-- 

where we can take 6 as Sgg5, the value of y at  which U = 0-995U1. This relates the 
value of G at y = S to the entrainment rate, which is easily deduced from mean 
velocity profiles. In zero pressure gradient, where ( 7 / ~ ) ~ & =  as defined in 3 2 occurs 
at y = $8, 

where p4 is the mean density a t  y = $8 and the constant of proportionality is 
independent of Mach number if T,/T& is constant, which appears to be a good 
approximation. In zero pressure gradient, where 

d(6- S,)/dx is nearly [(S- S1)/S2] dS,/dx and dS2/dx = ~ , , / p ~  U:, 

we find on substituting the definition of V, that 
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In  incompressible flow, experimental data for entrainment are well represented 
by taking 

and if the same function is assumed in compressible flow we finally obtain, as a 
res-ult of these assumptions, 8- S, 

62 
__ a k)’, 

This supplies roughly the required variation with Mach number (figure 1). The 
arguments for using (r/P)max rather than (7max/pI) are not strong: the latter 
would overestimate the effect of Mach number on entrainment by about the 
same amount that it is now underestimated, and would agree better with the 
more rapid variation of entrainment with Mach number suggested by Green 
(1968). However, the calculations are not very sensitive to the choice of G ;  as 
in low-speed flow, L, the ‘generalized mixing length ’, is much the most important 
of the three empirical functions. The final representation of energy diffusion is 

The other empirical data needed are (i) the recovery factor r ,  taken as 0.89 
for air; (ii) the viscosity temperature exponent, taken as 0.76 for air; (iii) the 
ratio of specific heats, y, taken as 1.4 for air; and (iv) the universal inner layer 
profile. Inspection of published data showed that for M < 3 and y/S < 0.05 the 
relation between U and r, in zero pressure gradient is given adequately by the 
incompressible logarithmic law if fluid properties are evaluated at the wall, 
giving 

and so we have used K = 0.4, A = 2 as in incompressible flow. As in the case of 
G, an empirical Mach number dependence, or the more complicated analytical 
expression of Rotta (1960) could be inserted without difficulty. Calculations in 
zero pressure gradient show that the apparent K (i.e. the reciprocal of the slope 
of the logarithmic part of the profile in U/u,, u, y/v co-ordinates) rises to about 
0.45 a t  M, = 0.05 (MI z 2) and 0.65 a t  M, = 0.1 (MI z 5), but the actual depar- 
ture from (34) is small. As in incompressible flow, we use Townsend’s (1961) 
modification to the logarithmic law when the shear-stress gradient in the y 
direction is large: an analytic function of (y/~,) ar,/ay, given in Q ,  is added to 
the right-hand side of (34). Our attempt to include compressibility effects in 
Townsend’s modification led to very complicated, and uncertain, expressions 
and so we have used the incompressible form, which differs little from the more 
complicated expression except near separation a t  high supersonic Mach numbers. 

Low Reynolds numbers 

A final piece of information, required both in compressible and incompressible 
flow, is the effect of Reynolds number on a,, L and G. It is well established that 
at high Reynolds number the energy-containing part of the turbulence does 

7 F L M  46 
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not depend directly on viscosity: this leads to Reynolds-number independence 
of a,, L and G and to such well-known formulae as the ‘defect law’ 

for the outer part of an incompressible boundary layer in zero pressure gradient. 
However, Coles (1962) found that the defect law changed with Reynolds 
number for UlS2/v < 5000, or 

(U,S/V) (+C,)+ = (Tw/pa,)* S/u < 2000 

(the latter Reynolds number being the more useful for comparing different flows 
if S is understood as the thickness of any shear layer). This trend has been 
roughly simulated in the incompressible version of the present method by 
allowing the dissipation length parameter L to vary as [ (~,~, /p, )9  S/2000 v,]-9 
in the outer layer only (Simpson 1970) as long as this quantity is greater than 
unity. Of course a, and G probably vary as well, but L is the most important 
parameter. There has been no comparably thorough analysis of compressible 
data but the measurements of Hastings & Sawyer (1970) at M, = 4 show that 
the same effect occurs. Herring & Mellor (1968) found that comparison between 
their calculation method and experiment was optimized by multiplying the 
eddy viscosity in the outer layer by 

1 + ( 1100 v,/u, S,)2 

roughly equivalent to 1 + 11400 Y , / ( T ~ ~ ~ / ~ , ) *  &I2. Even allowing for the fact that 
a given percentage change in eddy viscosity produces about twice the effect of 
the same percentage change in dissipation length parameter, this is a rather 
larger adjustment than that of L mentioned above, but it probably reflects 
differences between the two calculation methods more than differences between 
compressible and incompressible flow. The effect is very much larger than the 
direct effect of viscous shear stress. More work is needed before low-Reynolds- 
number effects can be properly represented in any calculation method: in 
compressible flow, the effect of viscosity fluctuations on the dissipation may be 
important. The best course for users of the present method is to do calculations 
with the original distribution of L (given in Q) and with a distribution factored 
by [(~max/~,)*S/2000vl]-~ in the outer layer, retaining L = 0.4~ in the inner 
layer: the difference between the two calculations gives an idea of the effects of 
low Reynolds numbers and the latter calculation may be relied on if these effects 
are not too large. 

It remains to discuss the minimum Reynolds number below which the method 
cannot be used. A plausible criterion for reverse transition from turbulent to 
laminar flow, and thus a lower limit of validity of any turbulent calculation 
method, was given by Bradshaw ( 1 9 6 9 ~ )  as [(~/p)*L/v],,, z 12, for incom- 
pressible flow. In  mild pressure gradients the maximum value of this quantity 
is reached at about y = 0.28. If we extend the criterion to compressible flow at  
constant pressure simply by substituting local values of density and viscosity 
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according to the Crocco formula for an adiabatic wall, which is plausible because 
the original criterion was based on local-equilibrium arguments, we obtain 

(?&6/v1) (&,)$ M 150 (1 + 0*07h?31’26 (36) 

as the lowest Reynolds number at which turbulent flow can be maintained (we 
have applied the criterion at y = 0.26 and assumed U/Ul = 0.8 there). Using 
typical values for cf and S,/S we find that the minimum permissible value of 
U,S/vl rises from 3000 at MI = 0 to 18 000 at MI = 5 :  U,6,/v, increases from about 
300 a t  M = 0 to 750 at M = 5. It is not possible to compare these values with the 
Reynolds number at  which transition from laminar to turbulent flow occurs 
because the latter depends on the disturbances that cause transition. In strongly 
accelerated flows, reverse transition occurs at  higher values of UIS/v because 7 
decreases rapidly with distance from the wall: in the experiments of Michel, 
Quemard&Elena (1969) at M M 2, departures from the logarithmic law similar to 
those occurring in reverse transition at  low speeds were found a t  U,6/vl % 70000. 
In  general, some care is needed in applying calculation methods at low Reynolds 
numbers. 

5. Test cases in zero pressure gradient 
The results for skin-friction coefficient cf in zero pressure gradient a t  Mach 

numbers from 0 to 5 are shown in table 1. The Reynolds numbers were chosen 
so that the output velocity profile from one run could be used to start the next: 
the accuracy of the calculations does not depend on Reynolds number in this 

Cf Hi 
A r-- - 

Spalding- Winter- Winter- d8 
(7- 1)M?& 

UI 4 
MI - Chi Gaudet Calculated Gaudet v Calculated 

0 12400 0.00246 0.00252 0.00256 1.33 1.31 0 
1 15200 0.00217 0.00222 0-00222 1.32 1-30 0.004 

2.2 50000 0.00139 0.00142 0.00138 1.27 1.26 0.016 
3 71000 0.00105 0.00104 0.00107 1.25 1.24 0.028 
4 149000 0.000714 0.000728 0.000752 1.20 1.22 0.042 
5 50000 0.000711 0.000702 0.083 

TABLE 1. Results of calculations in zero pressure gradient : adiabatic wall, 
recovery factor = 0.89. 

range. Since several correlations of experimental data exist we have compared 
with these rather than with any restricted set of experiments. Agreement with 
the correlation of Spalding & Chi (1964) is good and generally within the accuracy 
of using their tables. The results also agree well with the recent correlation of 
Winter & Gaudet (1968) who found that the ‘incompressible’ shape factor Hi, 
(equal to 6!/@ where 6; and 6; are the displacement and momentum thicknesses 
evaluated as in incompressible flow, excluding density variation) was a unique 
function of U18$vl, independent of Mach number up to dl = 2-8 at least. Winter 
& Gaudet deduced a skin-friction law, similar in concept and numerical results 

7-2 
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to that of Spalding & Chi, and again the results of the present method are in 
good agreement. These results are satisfactory as far as they go, although it 
must be remembered that skin-friction predictions for zero pressure gradient 
are greatly influenced by the accuracy of the inner ‘boundary’ condition, 
applied where the velocity is already as high as QU,: the assumptions made in 
the main part of the flow are therefore tested only one-third as severely as at  

1 .o 
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FIGURE 2. Calculated velocity profiles. (a) M = 2.2, U,S,/v = 50,000. x , data of Winter 
& Gaudet (1968); -, calculation. ( b )  M = 4.0, U , ~ , / V  = 149000. 

first appears. However, the present method predicts the outer-layer velocity 
profiles (figure 2) quite accurately, and this agreement, together with the good 
agreement in cf up to a Mach number where cf is barely a third of its low-speed 
value, gives one fair confidence in the truth of Morkovin’s hypothesis and the 
reliability of the present method. 

A less direct but more thorough confirmation of Morkovin’s hypothesis is 
given by the observation, mentioned in 3 1, that the distribution of the dimension- 
less apparent mixing length, I / $  = (7/p)*/($aU/ay),  in boundary layers in zero 
pressure gradient is almost independent of Mach number up to M = 5. Now as 
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was shown in &, 1/L is equal to the ratio of turbulent energy dissipation t o  
turbulent energy production : in zero pressure gradient this ratio is nearly unity 
everywhere and it is most unlikely that the ratio would change appreciably with 
Mach number. This implies that L/6 is almost independent of Mach number, as 
indicated by Morkovin’s hypothesis and as assumed in the present calculations. 

Maise & McDonald (1968) found that the dimensionless eddy viscosity, 
v7/UlS1 = r/(pU,$aU/ay) varied strongly with Mach number. Herring & Mellor 
(1968) and Cebeci et al. (1969) have used a:, the ‘incompressible ’ or ‘kinematic ’ 
displacement thickness, as a length scale: v7/U16i seems to be almost independent 
of Mach number. 6, and 6: are both integral length scales representative of the 
mean velocity distribution and are in no way connected with typical eddy 
sizes, so that their use in predicting the turbulent shear stress can be justified 
only a posteriori: the total boundary-layer thickness 6, on the other hand, is 
equally the length scale of the largest eddies, which fill the boundary layer, and 
is therefore a plausible length scale for the turbulent motion as well as the 
mean motion. 

Before making comparisons with experiments in pressure gradients we discuss 
one of the reasons why so many existing experiments are of doubtful value as 
test cases. 

6. Effects of surface curvature 
The most common way of generating a supersonic boundary layer in a 

pressure gradient is to use a curved surface, but if the pressure gradient is 
significant the effects of streamline curvature on the turbulence is likely to be 
significant also. The first-order analogy between buoyancy and streamline 
curvature used by Bradshaw (1969 b) to estimate this latter effect, indicates that 
the dissipation length parameter or apparent mixing length will be multiplied 
by a factor 

where /3 M 7 on a convex surface (radius of curvature R greater than zero) and 
p M 4 on a concave surface. Now the relation between self-induced pressure 
gradient and surface curvature in an otherwise wave-free supersonic stream is 

and a convenient dimensionless pressure gradient, in compressible flow, is 
(Sl/7,,)dp/dx which is the ratio of the two terms on the right-hand side of the 
momentum integral equation, 

d(p, U12,6,)/dx = r, + 6, dpldx. (38) 

Substituting for R in terms of dp/dx in the mixing-length correction factor 
above, and taking (2/cf)* as a rough value of U/(r/p)* the factor becomes 
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where the factor in parentheses increases somewhat with Mach number. Taking 
for example L/S = 0.1, M = 2.2, cf = 0-0016, S/S, = 5,  the mixing-length factor 
becomes 

1 /[ 1-01p- -  * : 2 ] 7  

so if = 4 (concave surface) very large changes in apparent mixing length are 
predicted when (SJ7,) dpldx approaches the modest value of unity. Since the 
mixing-length correction factor comes from an analogy which cannot reasonably 
be expected to hold to better than first order, we conclude that if self-induced 
pressure gradients on a curved surface are large, reliable predictions of boundary- 
layer development cannot be made a t  present. Whatever the detailed accuracy 
of the buoyancy-curvature analogy its order-of-magnitude plausibility seems to 
be adequate to support this conclusion. Further progress can be made only by 
direct study of the effects of streamline curvature on the turbulence structure, 
and since the simple analogy predicts that these effects depend strongly on 
Mach number (via the semi-empirical factor 1 + +(-y - 1) M 2 :  see also Rotta 
1967) it appears that this study should be extended to supersonic flow. 

A related question is the behaviour of turbulence passing through oblique 
shock waves or expansions. This depends as much on the effects of dilatation as 
on the effects of streamline curvature. Neither our assumptions nor any other 
current assumptions could be expected to  apply to situations like these. 

It should be emphasized that the effects of curvature on the turbulence arc 
not directly connected with the effects of curvature on the mean equations and 
in general they will be much more important than the latter, a t  least a t  the lower 
Mach numbers. 

It should also be emphasized that most supersonic aircraft are sufficiently 
slender for curvature effects and self-induced pressure gradients to be small : 
large pressure gradients are found mainly in engines and intakes or in regions of 
interference between components, and in these cases the pressure gradient is 
generally imposed externally rather than by large surface curvature. In subsonic 
flow there is of course no direct connexion between surface curvature and 
pressure gradient, and the effects of curvature on the turbulence are usually 
small enough t o  be represented by a first-order correction. 

\ 

7. Test cases in pressure gradient 
Rejection of measurements on highly curved surfaces leaves very few suitable 

test cases. Before abandoning flows on curved surfaces we did calculations for 
the boundary layers of Clutter & Kaups (1964), McLafferty & Barber (1962) 
and Winter, Rotta & Smith (196S), the last-named being strongly affected by 
curvature on the waisted body used, even a t  the lowest Mach number, 0.6. 
In all cases the predictions without a curvature correction were poor. The 
predictions of McLafferty & Barber’s flow were grossly changed by using the 
buoyancy analogy, which was pushed well beyond its likely limits of validity. 
The predictions for the M = 2 test case of Winter et al. (figure 3) were improved 
by an allowance for curvature but diverged from the experimental trend near 
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Comparisons with measurements at  high subsonic speeds by Firmin & Cook 
(1968) show large differences between the predicted skin friction and that 
measured by surface pitot tubes: the predictions agree, within the likely experi- 
mental accuracy, with skin-friction values obtained using the logarithmic law 
(predictions by the present method published by Pirmin & Cook were based on 
inconsistent input data, but the effect on cr was small). These test cases, in which 
the local Mach number did not exceed unity, do not add significantly to the 
extensive comparisons for incompressible flow reported in Kline et al. (1969) : at 
M = 1, skin-friction coefficients are only 6 or 7 % lower than at  M = 0, so that 
very crude estimates of compressibility effects would serve t o  predict cf to 
within the likely experimental error. 

The three supersonic test cases with appreciable pressure gradients on flat 
surfaces are those of Pasiuk, Hastings & Chatham (1964), Zwarts (N.R.C., 
Canada, unpublished: we are indebted to Dr Zwarts for access to his data) and 
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Sivasegaram (1970). All leave something to  be desired as test cases, and their 
various shortcomings will be discussed individually. 

Pasiuk et al. did not measure skin friction directly, and values derived from 
their velocity profiles using the logarithmic law (figure 4) are almost exactly 
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FIGURE 4. Accelerating flow of Pasiuk et al. (1964, zero heat transfer). 0, experiment 
(c, from log law); -, calculation; 0, cf from momentum balance, according to Cebeci 
et al. (1970) ; - - - -, cf from 'flat-plate ' formula of Spalding & Chi (1964) ; 0, calculation, 
with recovery factor taken as 1.0 for evaluating H .  

the same as the skin friction in a mnstant-pressure boundary layer a t  the same 
Mach number and Reynolds number, despite the fact that (S1/rw) dpldx was of 
the order of - 1, leading one to expect significant increases in cf (as predicted 
by the present method). Values of c j  inferred from the momentum integral 
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external Mach number decreased from 4.0 at x = -0.25 in. to 3.0 a t  about 
x = 15 in. after which it decreased again very slightly: it is therefore surprising 
that experimental values of c j  in the latter half of the tunnel are significantly 
larger than in a constant-pressure boundary layer. The calculated skin friction 
coefficient approaches the constant-pressure value from below, as in the analo- 
gous low-speed boundary layer (run 2400 of Kline et al. 1969). The main short- 
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coming of Zwarts's experiment was the rather small tunnel width of 5 in. 
(roughly 12 boundary-layer thickness) compared with a working section length 
of 17 in. plus about the same distance to  generate the initial boundary layer. 
Typically, the virtual origin deduced from the imbalance in the experimental 
momentum integral equation was about 25 in. downstream of the point con- 
sidered although divergence occurred in the latter part of the constant-pressure 
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FIGURE 6. Retarded flow of Sivasegaratn (1970). 
0, experiment; -, calculation; @, calculation, with T = 1.0 for evaluating H .  

region. In  t,he calculations, the equivalent lateral convergence was inserted into 
the continuity equation, but this simple kinematic correction is unreliable if 
the convergence is large: the crossflow angle may vary through the boundary 
layer and the convergence as such, or the effect of the nearby sidewalls, may 
affect the turbulence. However, a kinematic correction is better than ignoring 
convergence altogether. The apparent convergence deduced from the momentum 
integral equation is much too large to be attributed to errors in cf measurement. 

Sivasegaram measured skin friction using small surface pitot 'fences ' immersed 
in the viscous sublayer and calibrated in zero pressure gradient. The tunnel 
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width was 12 in. or about 20 boundary-layer thicknesses and the momentum 
integral equation balanced to within the experimental accuracy. Unfortunately 
the pressure gradients obtained were rather mild ( - 0-5 < ( & / T ~ )  dp/dx < 0.5 
over most of the flow) and even the mixing-length formula, without allowance 
for turbulence history, will predict the result quite adequately, The measured 
velocity profiles suggest that the flow at the first few measurement stations was 
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FIGURE 7. Accelerating flow of Sivasegaram (1970). 

0, experiment; -, calculation; 0, calculation, with r = 1.0 for evaluating H .  

near a state of reverse transition because of the rapid acceleration through the 
nozzle, which would explain the disagreement between experimental and 
calculated cf in figure 6 .  The acceleration in the nozzle region of the flow shown 
in figure 7 was much less severe. 

It is possible that the measured ct values in figures 4 and 5 are correct and 
representative of two-dimensional flow: the conclusion would be that in super- 
sonic flow a favourable pressure gradient does not appreciably increase skin 
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friction, and relaxation from an adverse pressure gradient causes a large over- 
shoot in skin friction. Both these effects could occur if the lifetime of turbulent 
eddies were far longer in supersonic flow than in low-speed flow but none of 
our current physical ideas about turbulence support this. The value of H 
obtained for a given velocity profile depends strongly on the temperature 
profile (i.e. on the recovery factor if we accept Crocco's formula as a good 
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FIGURE 8. Fictitious separating boundary layer (with MI = 3 for x < 45 cm, decreasing 
linearly to MI = 1.0 at z = 75 em). - - - -  , present calculation; -, mixing-length 
calculation (Sivasegaram 1970). 

approximation). In  the test cases presented here, Pasiuk et al. measured the 
temperature directly (obtaining the surprising result of a recovery factor 
greater than unity on some parts of a nominally adiabatic wall), Zwarts assumed 
constant total temperature ( r  = 1) in reducing his data, and Sivasegaram used 
the Crocco formula with r = 0.93 (being a typical value in his intermittent wind 
tunnel with a stagnation temperature rather less than room temperature). In  
our predictions of boundary-layer development we have used r = 0.89 through- 
out: the approximate effect of taking r = 1 solely for calculating H is shown in 
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the figures. As mentioned above the effect of r on the main part of the calculation 
(e.g. ct)  is fairly small. Hi is probably a more useful parameter for comparison 
but neither H nor Hi adds much to the comparison for cf because Hi and cf are 
coupled quite strongly by the logarithmic law for the inner layer. 

If the flow is truly two-dimensional or if lateral convergence is allowed for, 
comparison between experimental and calculated momentum thickness adds 
nothing to comparisons of cf and H because the three are connected by the 
momentum integral equation. In  Zwarts’s flow the difference between the 
experimental and calculated 8, is mainly due to inaccuracies in estimating the 
apparent lateral convergence from the imbalance in the experimental momen- 
tum integral equation : the large difference between experimental and calculated 
cf has comparatively little effect. 

Figure 8, reproduced from Bradshaw et al. (1970), shows a comparison of 
calculations by the present method and by the compressible version of the 
Patankar-Spalding mixing-length method for a fictitious but typical separating 
boundary layer. The difference in H ,  even a t  the initial station, results from 
differences in recovery factor (taken as 0.89 in the present method): the effect 
on cf is negligible. It can be seen that the skin-friction predictions of the two 
methods diverge soon after the start of the adverse pressure gradient, and the 
distance from the start of the adverse gradient to the separation point (extra- 
polated for the mixing-length calculation) differs by 15% between the two 
cases. The difference between the present method and the ‘local-equilibrium ’ 
mixing-length method is likely to be significant in practice. 

8. Conclusions 
Although the data available for testing the present calculation method are 

not as reliable or extensive as one could wish, the results in zero pressure gradient 
seem very satisfactory, even a t  Mach number where (y -  1)  M2, is quite large 
instead of being of order unity as required by our cautious version of Morkovin’s 
hypothesis. Agreement with experiment in strong pressure gradients a t  super- 
sonic speeds is not very good but the data are suspect. Since the incompressible 
version of the method works well in a wide range of pressure gradients and the 
extra assumptions required for extension to compressible flow are not likely to 
be affected by pressure gradient, it is unlikely that the combination of com- 
pressibility and pressure gradient will seriously degrade the results. 

As in incompressible flow, the assumptions are valid only for slowly-changing 
shear layers (i.e. those obeying the boundary-layer approximation) : they would 
not be valid, for instance, in or just downstream of a shock-wave/boundary-layer 
interaction. 

It seems that in practice compressible boundary layers may often suffer from the 
effects of low Reynolds number or large surface curvature. While neither of these 
effects is fully understood the present calculation method is soundly enough based 
for their occurrence, or even their magnitude, to be predited approximately. 

Algol or Fortran listings for the computer program are available from the 
first author. 
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